Abstract

Bromodomain containing protein 4 (BRD4) plays a critical role in controlling the expression of genes involved in development and cancer. Inactivation of BRD4 inhibits cancer growth, making it a promising anticancer drug target. The cancer stem cell (CSC) population is a key driver of recurrence and metastasis in patients with cancer. Here we show that cancer stem-like cells can be enriched from squamous cell carcinomas (SCC), and that these cells display an aggressive phenotype with enhanced stem cell marker expression, migration, invasion, and tumor growth. BRD4 is highly elevated in this aggressive subpopulation of cells, and its function is critical for these CSC-like properties. Moreover, BRD4 regulates ΔNp63α, a key transcription factor that is essential for epithelial stem cell function that is often overexpressed in cancers. BRD4 regulates an EZH2/STAT3 complex that leads to increased ΔNp63α-mediated transcription. Targeting BRD4 in human SCC reduces ΔNp63α, leading to inhibition of spheroid formation, migration, invasion, and tumor growth. These studies identify a novel BRD4-regulated signaling network in a subpopulation of cancer stem-like cells, elucidating a possible avenue for effective therapeutic intervention. SIGNIFICANCE: This study identifies a signaling cascade driven by BRD4 that upregulates ΔNp63α to promote cancer stem-like properties, which has potential therapeutic implications for the treatment of squamous cell carcinomas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.