Abstract

Limited therapeutic interventions and development of resistance to targeted therapy within few months of therapy pose a great challenge in the treatment of melanoma. Current work was aimed to investigate; (a) Anticancer activity of a novel class of compound - Bromodomain and Extra-Terminal motif (BET) protein degrader in sensitive and vemurafenib-resistant melanoma (b) Preformulation studies and formulation development. ARV-825 (ARV), a molecule designed using PROteolysis-TArgeting Chimeric (PROTAC) technology, degrades BRD4 protein instead of merely inhibiting it. Based on extensive preformulation studies, ARV loaded self-nanoemulsifying preconcentrate (ARV-SNEP) was developed and optimized. ARV showed extremely poor aqueous solubility (<7 μg/mL) and pH dependent hydrolytic degradation. CaCO-2 cell uptake assay and human liver microsome studies proved that ARV is a substrate of CYP3A4 but not of P-gp efflux pump. Optimized ARV-SNEP spontaneously formed nanoglobules of 45.02 nm with zeta potential of −3.78 mV and significantly enhanced solubility of ARV in various aqueous and bio-relevant media. Most importantly, ARV showed promising cytotoxicity, anti-migration and apoptotic activity against vemurafenib-resistant melanoma cells. ARV-SNEP could be potentially novel therapeutic approach for the treatment of drug-resistant melanoma. This is the very first paper investigating a PROTAC class of molecule for the treatment of drug resistant cancer, preformulation and formulation studies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.