Abstract

BackgroundChemoradiotherapy‐induced PD‐L1 upregulation leads to therapeutic resistance and treatment failure. The PD‐1/PD‐L1 blocking antibodies sensitize cancers to chemoradiotherapy by blocking extracellular PD‐1 and PD‐L1 binding without affecting the oncogenic function of intracellular PD‐L1. Reversing the chemoradiation‐induced PD‐L1 expression could provide a new strategy to achieve a greater anti‐tumour effect of chemoradiotherapy. Here, we aimed to identify candidate small molecular inhibitors that might boost the anti‐tumour immunity of chemoradiotherapy by decreasing treatment‐induced PD‐L1 expression in non‐small cell lung cancer (NSCLC).MethodsA drug array was used to recognize compounds that can suppress the cisplatin‐induced and radiation‐induced PD‐L1 expression in NSCLC via the flow cytometry‐based assay. We examined whether and how targeting bromodomain containing 4 (BRD4) inhibits chemoradiation‐induced PD‐L1 expression and evaluated the effect of BRD4 inhibition and chemoradiation combination in vivo.ResultsBRD4 inhibitors JQ1 and ARV‐771 were identified as the most promising drugs both in the cisplatin and radiation screening projects in two NSCLC cell lines. Targeting BRD4 was supposed to block chemoradiotherapy inducible PD‐L1 expression by disrupting the recruitment of BRD4‐IRF1 complex to PD‐L1 promoter. A positive correlation between BRD4 and PD‐L1 expression was observed in human NSCLC tissues. Moreover, BRD4 inhibition synergized with chemoradiotherapy and PD‐1 blockade to show a robust anti‐tumour immunity dependent on CD8+ T cell through limiting chemoradiation‐induced tumour cell surface PD‐L1 upregulation in vivo. Notably, the BRD4‐targeted combinatory treatments did not show increased toxicities.ConclusionThe data showed that BRD4‐targeted therapy synergized with chemoradiotherapy and anti‐PD‐1 antibody by boosting anti‐tumour immunity in NSCLC.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.