Abstract

Ovarian cancer is the leading cause of death among gynecological cancers. It exhibits great heterogeneity in tumor biology and treatment response. Germline mutations of DNA repair genes BRCA1/2 are the fundamental defects in hereditary ovarian cancer that expresses a distinct phenotype of high response rates to platinum agents, improved disease-free intervals and survival rates, and high-grade serous histology. The term "BRCAness" describes the phenotypic traits that some sporadic ovarian tumors share with tumors in BRCA1/2 germline mutation carriers and reflects similar causative molecular abnormalities. BRCA pathway studies and molecular profiling reveal BRCA-related defects in almost half of the cases of ovarian cancer. BRCA-like tumors are particularly sensitive to DNA-damaging agents (e.g., platinum agents) because of inadequate BRCA-mediated DNA repair mechanisms, such as nucleotide-excision repair and homologous recombination (HR). Additional inhibition of other DNA repair pathways leads to synthetic lethality in HR-deficient cells; this has been employed in the treatment of BRCA-like ovarian tumors with poly(ADP-ribose) polymerase inhibitors with promising results. This article presents a comprehensive review of the relevant literature on the role of BRCAness in ovarian cancer with respect to BRCA function, methods of BRCA epigenetic defect detection and molecular profiling, and the implications of BRCA dysfunction in the treatment of ovarian cancer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.