Abstract

BRCA2 is a key component of the homologous recombination (HR) pathway of DNA repair, acting as the loader of RAD51 recombinase at sites of double-strand breaks. Here, we demonstrate that BRCA2 associates with telomeres during S/G2 and facilitates RAD51 loading onto telomeres. Conditional Brca2 deletion and Rad51 inhibition in mouse embryonic fibroblasts (MEFs), but not Brca1 inactivation, led to telomere shortening and accumulation of fragmented telomeric signals, a hallmark of telomere fragility associated with replication defects. This suggests that BRCA2-mediated HR reactions contribute to telomere length maintenance by facilitating telomere replication and implies an essential role for BRCA2 in telomere integrity during unchallenged cell proliferation. Mouse mammary tumors lacking Brca2 accumulated telomere dysfunction-induced foci. BRCA2-mutated human breast tumors had shorter telomeres than BRCA1-mutated ones, suggesting that the genomic instability observed in BRCA2-deficient tumors is due in part to telomere dysfunction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.