Abstract
Homologous recombination has a dual role in eukaryotic organisms. Firstly, it is responsible for the creation of genetic variability during meiosis by directing the formation of reciprocal crossovers that result in random combinations of alleles and traits. Secondly, in mitotic cells, it maintains the integrity of the genome by promoting the faithful repair of DNA double-strand breaks (DSBs). In vertebrates, it therefore plays a key role in tumour avoidance. Mutations in the tumour suppressor protein BRCA2 are associated with predisposition to breast and ovarian cancers, and loss of BRCA2 function leads to genetic instability. BRCA2 protein interacts directly with the RAD51 recombinase and regulates recombination-mediated DSB repair, accounting for the high levels of spontaneous chromosomal aberrations seen in BRCA2-defective cells. Recent observations indicate that BRCA2 also plays a critical role in meiotic recombination, this time through direct interactions with the meiosis-specific recombinase DMC1. The interactions of BRCA2 with RAD51 and DMC1 lead us to suggest that the BRCA2 tumour suppressor is a universal regulator of recombinase actions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.