Abstract
<h3>Octext.</h3> —A mutation in the<i>BRCA1</i>gene may confer substantial risk for breast and/or ovarian cancer. However, knowledge regarding all possible mutations and the relationship between risk factors and mutations is incomplete. <h3>Objectives.</h3> —To identify<i>BRCA1</i>mutations and to determine factors that best predict presence of a deleterious<i>BRCA1</i>mutation in patients with breast and/or ovarian cancer. <h3>Design.</h3> —A complete sequence analysis of the<i>BRCA1</i>coding sequence and flanking intronic regions was performed in 798 women in a collaborative effort involving institutions from the United States, Italy, Germany, Finland, and Switzerland. <h3>Participanta.</h3> —Institutions selected 798 persons representing families (1 person for each family) thought to be at elevated a priori risk of<i>BRCA1</i>mutation due to potential risk factors, such as multiple cases of breast cancer, early age of breast cancer diagnosis, and cases of ovarian cancer. No participant was from a family in which genetic markers showed linkage to the<i>BRCA1</i>locus. <h3>Major Outcome Measures.</h3> —Sequence variants detected in this sample are presented along with analyses designed to determine predictive characteristics of those testing positive for<i>BRCA1</i>mutations. <h3>Results.</h3> —In 102 women (12.8%), clearly deleterious mutations were detected. Fifty new genetic alterations were found including 24 deleterious mutations, 24 variants of unknown significance, and 2 rare polymorphisms. In a subset of 71 Ashkenazi Jewish women, only 2 distinct deleterious mutations were found: 185delAG in 17 cases and 5382insC in 7 cases. A bias in prior reports for mutations in exon 11 was revealed. Characteristics of a patient's specific diagnosis (unilateral or bilateral breast cancer, with or without ovarian cancer), early age at diagnosis, Ashkenazi Jewish ethnicity, and family history of cancer were positively associated with the probability of her carrying a deleterious<i>BRCA1</i>mutation. <h3>Conclusions.</h3> —Using logistic regression analysis, we provide a method for evaluating the probability of a woman's carrying a deleterious<i>BRCA1</i>mutation for a wide range of cases, which can be an important tool for clinicians as they incorporate genetic susceptibility testing into their medical practice.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.