Abstract

BackgroundBRCA1-associated breast cancer originates from luminal progenitor cells. BRCA1 functions in multiple biological processes, including double-strand break repair, replication stress suppression, transcriptional regulation, and chromatin reorganization. While non-malignant cells carrying cancer-predisposing BRCA1 mutations exhibit increased genomic instability, it remains unclear whether BRCA1 haploinsufficiency affects transcription and chromatin dynamics in breast epithelial cells.MethodsH3K27ac-associated super-enhancers were compared in primary breast epithelial cells from BRCA1 mutation carriers (BRCA1mut/+) and non-carriers (BRCA1+/+). Non-tumorigenic MCF10A breast epithelial cells with engineered BRCA1 haploinsufficiency were used to confirm the H3K27ac changes. The impact of BRCA1 mutations on enhancer function and enhancer-promoter looping was assessed in MCF10A cells.ResultsHere, we show that primary mammary epithelial cells from women with BRCA1 mutations display significant loss of H3K27ac-associated super-enhancers. These BRCA1-dependent super-enhancers are enriched with binding motifs for the GATA family. Non-tumorigenic BRCA1mut/+ MCF10A cells recapitulate the H3K27ac loss. Attenuated histone mark and enhancer activity in these BRCA1mut/+ MCF10A cells can be partially restored with wild-type BRCA1. Furthermore, chromatin conformation analysis demonstrates impaired enhancer-promoter looping in BRCA1mut/+ MCF10A cells.ConclusionsH3K27ac-associated super-enhancer loss is a previously unappreciated functional deficiency in ostensibly normal BRCA1 mutation-carrying breast epithelium. Our findings offer new mechanistic insights into BRCA1 mutation-associated transcriptional and epigenetic abnormality in breast epithelial cells and tissue/cell lineage-specific tumorigenesis.

Highlights

  • BRCA1-associated breast cancer originates from luminal progenitor cells

  • BRCA1mut/+ Human mammary epithelial cell (HMEC) are associated with reduced superenhancer mark To compare super-enhancer landscapes in BRCA1+/+ and BRCA1mut/+ normal human breast epithelia, primary HMECs were isolated from fresh cancer-free breast tissues of BRCA1 mutation carriers (BRCA1mut/+, n = 3) and non-carriers (BRCA1+/+, n = 3), who underwent prophylactic mastectomy and reduction mammoplasty, respectively

  • A total of 343 super-enhancers were identified in BRCA1mut/+ and/or BRCA1+/+ breast epithelia, 268 of which were shared by BRCA1+/+ and BRCA1mut/+ HMECs (Additional file 2: Table S1, for an example see Additional file 3: Figure S1)

Read more

Summary

Introduction

BRCA1-associated breast cancer originates from luminal progenitor cells. BRCA1 functions in multiple biological processes, including double-strand break repair, replication stress suppression, transcriptional regulation, and chromatin reorganization. 1 in 400 women in the USA carry germline BRCA1 mutation (BRCA1mut/+) [1, 2]. These BRCA1 mutation carriers have significantly higher risk of developing breast cancer compared to the general population, with an estimated cumulative risk of 65% by the age of 70 [3, 4]. The only effective risk-reducing options for women with BRCA1 mutations are prophylactic mastectomy and oophorectomy, which can achieve 90% and 50% reduction in breast cancer risk, respectively [6,7,8,9]. Understanding functional deficiency that occurs prior to clinically evident cancer in precancerous BRCA1mut/+ breast epithelium is an important step towards developing alternative preventive strategies with higher precision and fewer side effects

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.