Abstract
IntroductionThe detection of BRCA1/2 mutations is important because PARP1 inhibitors are approved for germline and/or somatic BRCA-mutated advanced ovarian cancer. Next-generation sequencing (NGS) is increasingly used in clinical practice for BRCA1/2 mutations. The purpose of this study was to consider several conditions of NGS BRCA1/2 assay applicable to clinical laboratory tests, in particular for using formalin fixed paraffin embedded (FFPE) ovarian tissues. Materials and methodsWe selected 64 ovarian cancer patients and performed Oncomine™ BRCA assay using FFPE tissue. Effect of FFPE sample quality was analyzed by NGS quality parameters including deamination metric. Somatic variants were selected by removing germline variants of peripheral blood and interpreted as pathogenic, variants of unknown significance, and false positive. ResultsWe found a positive relationship between the number of variants over the deamination metric and FFPE age (P < 0.001) with a cutoff values of approximately 0.7 and 60 months, respectively. When comparing NGS results with Sanger sequencing, NGS misreported 3 of 15 variants using default parameters which were corrected after changing parameters. We detected somatic variants in eight patients and classified them into pathogenic (n = 3), VUS (n = 3) and false positive (n = 2). ConclusionsThis study is important for improving BRCA1/2 mutation detection capabilities of NGS analytical pipelines and strategy to overcome their limitations using FFPE tissue in ovarian cancer patients.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.