Abstract

Objective Aggressive clinical course and difficult detection of ovarian cancer are major challenges to improving patient survival and necessitate avid investigation into more effective therapeutic approaches. Understanding early molecular and pathological changes in high risk patients, such as BRCA1 mutation carriers, can provide candidates for molecular profiling and novel targets for effective therapies. Methods Using a culture model system for normal human ovarian surface epithelial cells with and without the BRCA1 185delAG frameshift mutation for the truncated protein product, BRAt, we investigated the role of BRAt in enhanced chemosensitivity. We used MTS, Western immunoblot, semi-quantitative RT-PCR, luciferase reporter and siRNA assays, to identify novel downstream targets of BRAt that promote apoptosis following chemotherapeutic treatment. Results We identified maspin as a novel downstream target of BRAt. BRAt increases maspin expression with preferential nuclear localization of maspin. Further, Brat-mediated maspin expression is transcriptionally regulated through an AP1 site within the (−520) to (−297) region of the promoter. Lastly, BRAt, enhances chemosensitivity in normal ovarian surface epithelial cells through c-Jun by a mechanism that may involve maspin. Conclusions BRAt-mediated enhanced chemosensitivity correlates clinically with enhanced chemotherapeutic response in BRCA1 mutation carriers. BRAt-mediated maspin expression also correlates with improved prognostic outlook for ovarian tumors with high levels of nuclear maspin. Consequently, understanding early genotypic and phenotypic changes in the context of high risk disease may provide a better understanding of the mechanism of mutation-associated ovarian cancer and provide new targets for therapeutic intervention.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.