Abstract

Triple-negative breast cancer (TNBC) can be distinguished from other breast malignancies by the lack of expression of estrogen receptors (ER), progesterone receptors (PR) as well as human epidermal growth factor receptor 2 (HER2). TNBC is associated with adverse clinical outcomes and high risk of metastasis. Currently, several clinical and translational reports are focusing on developing targeted therapies for this aggressive cancer. In addition to approved targeted drugs such as poly(ADP-ribose) polymerase inhibitors (PARPi) and immune-checkpoint inhibitors, platinum-based chemotherapy is still a cornerstone therapeutic option in TNBC. However, despite the observed improved outcomes with platinum- based chemotherapy in TNBC, there is still a large proportion of patients who do not respond to this treatment, hence, the need for predictive biomarkers to stratify TNBC patients and therefore, avoiding unwanted toxicities of these agents. With the emergence of genetic testing, several recent studies suggested mutations in breast cancer susceptibility gene (BRCA) in TNBC patients as important predictors of outcomes. These mutations alter the homologous recombination repair (HRR) mechanisms leading to genomic instability. Consequently, sensitivity to platinum-based treatments in this subpopulation of TNBC patients may be explained by cell death enhanced by deoxyribonucleic acid (DNA) damage induced by these potent anticancer drugs. Through this paper, we review several recent studies on this topic to better understand the mechanisms and discuss the potential of BRCA mutational status as a predictive biomarker of platinum-based chemotherapy in TNBC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call