Abstract

Let ℚ ab denote the maximal abelian extension of the rationals ℚ, and let ℚabnil denote the maximal nilpotent extension of ℚ ab . We prove that for every primep, the free pro-p group on countably many generators is realizable as the Galois group of a regular extension of ℚabnil(t). We also prove that ℚabnil is not PAC (pseudo-algebraically closed).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.