Abstract
Drought frequently results in significant losses in agricultural systems, including the soybean yield. Brassinosteroids exhibit multiple actions on essential processes, including chlorophyll fluorescence and gas exchange. Considering that the electron transport rate (ETR) into photosystems can exercise interference on net photosynthetic rate (PN), this research aims to determine whether 24-epibrassinolide (EBR) affects electron transport and find out if there is any repercussion on photosynthesis in soybean plants affected by the water deficit. The experiment was performed using a randomized factorial design, with two water conditions (control and water deficit) and three EBR concentrations (0, 50, and 100 nM EBR). The water deficit reduced effective quantum yield of PSII photochemistry, ETR, PN, and water-use efficiency. However, the exogenous application of 100 nM EBR mitigated these negative effects, increasing these variables. EBR reduced the oxidant compounds (superoxide and hydrogen peroxide) and membrane damages (malondialdehyde and electrolyte leakage) in stressed plants. Our study proved that EBR increased ETR and PN in control and stressed plants, revealing that ETR had a strong relationship with PN. These results suggest that soybean plants with higher values of ETR are more efficient in relation to PN.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.