Abstract

As emerging pollutants of global concern, absorbed nanoplastics might have negative impacts on plant development and nutrient uptake, thereby decreasing yields. If nanoplastics are transferred to the edible parts of plants, they may pose a threat to human health when large quantities are ingested. While nanoplastic-induced phytotoxicity is attracting increasing attention, little is known about how to inhibit nanoplastic accumulation in plants and reduce the subsequent adverse effects. Here we investigated the absorption and accumulation of polystyrene nanoplastics (PS-NPs) in different plant species and the role of brassinosteroids in alleviating PS-NP toxicity. Brassinosteroids inhibited accumulation of PS-NPs in tomato fruit and reversed PS-NP-induced phytotoxicity to promote plant growth and increase fresh weight and plant height. Brassinosteroids also reversed the induction of aquaporin-related genes by PS-NPs including TIP2-1, TIP2-2, PIP2-6, PIP2-8, PIP2-9, SIP2-1, and NIP1-2, providing a potential stress mechanism by which PS-NPs accumulate in the edible parts and targets for inhibition. In transcriptomic analyses, brassinosteroids enhanced fatty acid and amino acid metabolism and synthesis. In conclusion, exogenous application of 50 nM brassinosteroids alleviated the adverse effects of PS-NPs on plants, and exogenous application of brassinosteroids might be an effective means to minimize PS-NP-induced phytotoxicity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.