Abstract

Brassicaceae crops often produce an unexplained increase in plant-available soil N possibly related to bioactive compounds produced from glucosinolates present in the tissues. Our objective was to determine if glucosinolate-containing tissues inhibit nitrification, thereby potentially explaining this observation. Ammonium, NO(2)(-), and NO(3)(-) N were measured in soils amended with Brassicaceae ( Isatis tinctoria L., Brassica napus L., Brassica juncea L., and Sinapis alba L.) tissues containing different glucosinolate types and concentrations or Kentucky bluegrass ( Poa pratensis L.) residues with equivalent C/N ratios as the Brassicaceae samples. There was greater accumulation of NH(4)(+) N in soils amended with tissues containing high glucosinolate concentrations as compared to soils amended with tissues containing no or low glucosinolate concentrations. Nitrite N was detected only in soils amended with Brassicaceae tissues having the highest glucosinolate concentrations. The positive correlation of both NH(4)(+) and NO(2)(-) N accumulation with the glucosinolate concentration indicates the participation of glucosinolate hydrolysis products in nitrification inhibition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.