Abstract

The dynamics of the Brans-Dicke theory with a scalar field potential function is investigated. We show that the system with a barotropic matter content can be reduced to an autonomous three-dimensional dynamical system. For an arbitrary potential function we found the values of the Brans-Dicke parameter for which a global attractor in the phase space representing de Sitter state exists. Using linearized solutions in the vicinity of this critical point we show that the evolution of the Universe mimics the $\Lambda$CDM model. From the recent Planck satellite data, we obtain constraints on the variability of the effective gravitational coupling constant as well as the lower limit of the mass of the Brans-Dicke scalar field at the de Sitter state.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.