Abstract
We review the emergence of the ten-dimensional fermionic closed string theories from subspaces of the Hilbert space of the 26-dimensional bosonic closed string theory compactified on an $E_8\times SO(16)$ lattice. They arise from a consistent truncation procedure which generates space-time fermions out of bosons. This procedure is extended to open string sectors. We prove that truncation of the unique tadpole-free $SO(2^{13})$ bosonic string theory compactified on the above lattice determines the anomaly free Chan-Paton group of the Type I theory and the consistent Chan-Paton groups of Type O theories. It also predicts the tension of space-filling D-branes in these fermionic theories. The derivation of these fermionic string properties from bosonic considerations alone points towards a dynamical origin of the truncation process. Space-time fermions and supersymmetries would then arise from bosonic degrees of freedom and no fermionic degrees of freedom would be needed in a fundamental theory of quantum gravity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.