Abstract

We propose that higher-dimensional extended objects (p-branes) are created by super-Planckian scattering processes in theories with TeV scale gravity. As an example, we compute the cross section for p-brane creation in a (n+4)-dimensional spacetime with asymmetric compactification. We find that the cross section for the formation of a brane which is wounded on a compact submanifold of size of the fundamental gravitational scale is larger than the cross section for the creation of a spherically symmetric black hole. Therefore, we predict that branes are more likely to be created than black holes in super-Planckian scattering processes in these manifolds. The higher rate of p-brane production has important phenomenological consequences, as it significantly enhances possible detection of non-perturbative gravitational events in future hadron colliders and cosmic rays detectors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.