Abstract

We model and solve an order acceptance and scheduling problem in an identical parallel machine setting. The goal is to maximize profit by making four decisions: (i) accept or reject an order, (ii) assign accepted orders to identical parallel machines, (iii) sequence accepted orders, and (iv) schedule order starting times. First, we develop a mixed-integer model that simultaneously optimizes the above four decisions. We enhance the model with pre-processing techniques, valid inequalities, and dominance rules. Second, we show that the model has a special structure that allows us to develop both classical and combinatorial Benders decomposition. We thus develop a classical Benders decomposition approach and two combinatorial Benders variants: (i) logic-based Benders decomposition and (ii) Branch-Relax-and-Check (BRC). The BRC, as the primary contribution of this paper, extends the literature in three ways: (1) it incorporates novel sequencing sub-problem relaxations that expedite convergence, (2) it employs a novel cutting-plane partitioning procedure that allows these sub-problem relaxations to be separately optimized outside the master problem, and (3) it uses temporary Benders cuts that communicate sub-problem relaxation solutions to the master problem. Third, we demonstrate that the BRC outperforms significantly other methods and finds integer feasible solutions for 100% of instances, guarantees optimality in 50% of instances, and achieves an average optimality gap of 3.20% within our time limit.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call