Abstract

Nanostructure modulation is effective to achieve high performance TiO2-based gas sensors. We herein report a wet-chemistry route to precipitate directly branched TiO2 nanowire arrays on alumina tubes for gas sensing applications. The optimized branched TiO2 nanowire array exhibits a response of 9.2 towards 100 ppm ethanol; whilst those of the pristine TiO2 nanowire array and the branched TiO2 nanowire powders randomly distributed are 5.1 and 3.1, respectively. The enhanced response is mainly contributed to the unique porous architecture and quasi-aligned nanostructure, which provide more active sites and also favor gas migration. Phase junctions between the backbone and the branch of the branched TiO2 nanowire arrays help the resistance modulation as a result of potential barriers. The facile precipitation of quasi-aligned arrays of branched TiO2 nanowires, which are in situ grown on ceramic tubes, thus provides a new economical synthetic route to TiO2-based sensors with excellent properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call