Abstract
It is becoming increasingly clear that the supercharacter theory of the finite group of unipotent upper-triangular matrices has a rich combinatorial structure built on set-partitions that is analogous to the partition combinatorics of the classical representation theory of the symmetric group. This paper begins by exploring a connection to the ring of symmetric functions in non-commuting variables that mirrors the symmetric group’s relationship with the ring of symmetric functions. It then also investigates some of the representation theoretic structure constants arising from the restriction, tensor products and superinduction of supercharacters in this context.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.