Abstract
We study the branching ratios of the allowed and forbidden radiative transitions among the first few (9) fine structure levels of O VI using relativistic coupled-cluster theory. We find irregular patterns for a number of transitions within n-complexes with n ⩽ 4. We have used the existing values of the allowed electric dipole (E1) transition as a benchmark of our theory. Good agreement with the existing values establish accuracies of not only the theoretical method but the basis function as well. In general, the electric quadrupole (E2) transition probabilities are greater in magnitude than magnetic dipole (M1) transition probabilities, whereas for medium atomic transition frequencies they are of the same order of magnitude. On the other hand, if the transitions involved are in between two fine-structure components of the same term, then the M1 transition probability is more probable than that of E2. The results presented here in tabular and graphical form are compared with the available theoretical and observed data. Graphical analysis helps to understand the trends of electric and magnetic transitions for the decay channels presented here. Our calculated values of the lifetimes of the excited states are in very good agreement with the available results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Physics B: Atomic, Molecular and Optical Physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.