Abstract

Using the theory of regular variation, we give a sufficient condition for a point process to be in the superposition domain of attraction of a strictly stable point process. This sufficient condition is used to obtain the weak limit of a sequence of point processes induced by a branching random walk with jointly regularly varying displacements. Because of heavy tails of the step size distribution, we can invoke a one large jump principle at the level of point processes to give an explicit representation of the limiting point process. As a consequence, we extend the main result of Durrett (1983) and verify that two related predictions of Brunet and Derrida (2011) remain valid for this model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.