Abstract

BackgroundAccurate estimates of available live crown fuel loads are critical for understanding potential wildland fire behavior. Existing crown fire behavior models assume that available crown fuels are limited to all tree foliage and half of the fine branches less than 6 mm in diameter (1 h fuel). They also assume that this relationship is independent of the branchwood moisture content. Despite their widespread use, these assumptions have never been tested, and our understanding of the physiochemical properties that govern live crown flammability and consumption remains limited. To test these assumptions, we sampled branches from 11 common Intermountain West USA conifers and determined the corrected available fuel estimates using physiochemical measurements, diameter subsize class distributions, and a bench-scale consumption experiment. Additional branches were air-dried to explore interaction between moisture content and consumption. Corrected available live crown fuel was compared to existing models across species and then used to determine potential differences in crown fire energy release.ResultsAcross the 11 common conifers, distinct patterns of sub 1 h fuel distributions were strong predictors of whether the existing available live crown fuel models overestimated, approximately correctly estimated, or underestimated available live fuel. Fine branchwood distributions generally fell into three archetypes: fine skewed, normally distributed, and coarse skewed. Based on our corrected estimates, existing models overestimated the potential canopy energy by 34% for an average-sized western larch and underestimated it by 18.8% for western hemlock. The critical fine branchwood consumption diameter varied with species and moisture content. Larger proportions of fine branches were consumed as the branchwood dried, and nearly all the 1 h fuel was consumed when the branches were completely dry.ConclusionsThese results suggest that available live canopy fuel load estimates should consider species and moisture content to accurately assess and map fuel loads across landscapes. This work has implications for forest and fire management in conifer-dominated forests throughout western North America, and in other similar forests worldwide.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.