Abstract
Ubiquitin chains of distinct topologies control the stability, interactions, or localization of many proteins in eukaryotic cells, and thus play an essential role in cellular information transfer. It has recently been found that ubiquitin chains can be combined to produce branched conjugates that are characterized by the presence of at least two linkages within the same polymer. Akin to their homotypic counterparts, branched chains elicit a wide array of biological outputs, further expanding the versatility, specificity, and efficiency of ubiquitin-dependent signaling. This review discusses emerging understanding of the synthesis and function of branched ubiquitin chains.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.