Abstract

To study the relation between the number of hyphal tips and protein secretion during growth on a solid substrate, we have constructed two mutant strains of Aspergillus oryzae with increased hyphal branching. We have analysed hydrolytic enzyme activities during growth on wheat kernels (WK) of A. oryzae strains carrying the disrupted allele of the pclA gene encoding a secretion pathway specific (KEX2-like) endo-protease and the disrupted allele of the pg/pi-tp gene encoding a phosphatidylglycerol/phosphatidylinositol transfer protein. The biomass levels produced by the pclA and pg/pi-tp disrupted strains on wheat-based solid media were similar as found for the wild-type strain. However, the pclA disrupted strain showed much more compact colony morphology than the other two strains. Sporulation of the pclA and pg/pi-tp disrupted strains occurred, respectively, 2 days and 1 day later, compared to the wild type during fermentation on ground WK. During surface growth, microscopic analysis revealed that the hyphal growth unit length (L (hgu)) of the pclA and pg/pi-tp disrupted strains was, on average, 50 and 74% of that of the wild-type strain. This implies that in both mutant strains, a higher branching frequency occurs than in the wild-type strain. Compared to the wild-type strain, the pclA and pg/pi-tp disrupted strains produced at least 50% more amylase, at least 100% more glucoamylase and at least 90% more protease activity levels after growth on WK. These results support the hypothesis that branching mutants with an increased branching frequency can improve the solid state fermentation process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.