Abstract

We prove existence of an unbounded global branch (i.e. connected set) of weak solutions of a second order quasilinear equation depending on a real parameter λ on an arbitrary (possibly non-smooth) bounded domain in R N , with a Leray–Lions operator as the leading part. Here, we can allow lower order nonlinearities which depend on first derivatives, satisfying appropriate growth conditions including the critical case. Furthermore, we give sufficient conditions for the existence of a branch consisting entirely of nonnegative solutions for positive λ . Our approach also yields a new existence result in the case of critical growth in derivatives of lower order.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.