Abstract
Lactic acid bacteria are nutritionally demanding bacteria which need, among other things, amino acids for optimal growth. We identified the branched-chain amino acid (BCAA) biosynthesis pathway as an essential pathway for optimal growth of Streptococcus thermophilus in milk. Through random insertional mutagenesis, we isolated and characterized two mutants for which growth in milk is affected as a consequence of ilvB and ilvC gene interruptions. This situation demonstrates that the BCAA biosynthesis pathway is active in S. thermophilus. BCAA biosynthesis is necessary but not sufficient for optimal growth of S. thermophilus and is subject to retro-inhibition processes. The specificity of the BCAA biosynthesis pathway in S. thermophilus lies in the independent transcription of the ilvC gene encoding a keto acid reductoisomerase acting on acetolactate at the junction of the BCAA and acetoin biosynthesis pathways. The possible advantages for S. thermophilus of keeping this biosynthesis pathway active could be linked either to adaptation of the organism to milk, which is different than that of other dairy bacteria, or to the role of the pathway in maintaining the internal pH.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.