Abstract

AbstractBranched polystyrenes with abundant pendant vinyl functional groups were prepared via radical polymerization of an asymmetric divinyl monomer, which possesses a higher reactive styryl and a lower reactive butenyl. Employing a fast reversible addition fragmentation chain transfer (RAFT) equilibrium, the concentration of active propagation chains remained at a low value and thus crosslinking did not occur until a high level of monomer conversion. The combination of a higher reaction temperature (120 °C) and RAFT agent cumyl dithiobenzoate was demonstrated to be optimal for providing both a more highly branched architecture and a higher polymer yield. The molecular weights (Mws) increased with monomer conversions because of the controlled radical polymerization characteristic, whereas the Mw distributions broadened showing a result of the gradual increase of the degree of branching. The evolution of branched structure has been confirmed by a triple detection size exclusion chromatography (TRI‐SEC) and NMR technique. Furthermore, the double bonds in the side chains were successfully used for chemical modification reactions. 1H NMR and FTIR measurements reveal that the great mass of pendant vinyl groups were converted to the corresponding objective end‐groups. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6023–6034, 2008

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call