Abstract

Branched nanowire (NW) heterostructures have recently been attracted considerable attention for solar water splitting and clean hydrogen production due to their unique properties such as nanoscale integration of different functional materials, greatly enhanced junction and surface area, enhanced gas evolution efficiency, broadband light absorption, etc. Moreover, branched NWs can be fabricated using facile and scalable fabrication methods such as hydrothermal or solvothermal growth methods. In this presentation, we show branched NWs of different compositions for core (or trunk) and branch NWs which were fabricated with facile and low-cost synthesis methods using cheap, non-toxic, and earth abundant materials including Si, CuO, Cu2O, ZnO, TiO2, and Fe2O3. The branched NW structures and the heterostructures’ interfaces are investigated in detail using different characterization techniques such as SEM/HRSEM, TEM/HRTEM, STEM/HRSETM, etc. The photoelectrochemical (PEC) performances including photocurrent turn-on potential, photocurrent, solar conversion efficiency, and incident photon-to-current efficiency (IPCE) are studied systematically and optimized, based on different core and branch NW dimensions, for each specific branched NW heterostructure to provide efficient water splitting in a neutral medium. The electrode stability of different branched NWs is also investigated and long-term stability of over one day or several hours using a thin passivation layer or robust branched NWs are presented. The achieved results pave the way for accomplishing spontaneous overall solar water splitting for clean, efficient, cost-effective and durable solar hydrogen generation at large scales.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.