Abstract

Engineering the surface morphology of fibers has been attracting significant consideration in various areas and applications. In this study, polyvinylidene fluoride (PVDF) branched nanofibers with a diameter of less than 50 nm are electrospun directly at a low relative humidity by adding tetrabutylammonium chloride. The effects of the branched structure on the specific surface area and pore size distribution are investigated, and the filtration properties of the air filter based on branched nanofiber webs with different basis weights are studied. The results exhibit that the air filter based on PVDF branched nanofibers with the basis weight of 1 g/m2 has an outstanding filtration efficiency (99.999%) to 0.26 µm sodium chloride particles under the pressure drop of 126.17 Pa. We believe that this study can be used as a useful reference for the preparation of branched nanofibers through one-step electrospinning.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.