Abstract

Branched manifold is certainly the finest description of the structure of chaotic attractors, characterizing how the unstable periodic orbits are knotted. Many chaotic attractors produced by strongly dissipative systems were thus topologically described. In spite of this, the different possibilities for the branched manifolds which may be constructed from unimodal maps were never exhaustively listed. This is the task of the present work, starting from the folded (Logistic) map, the torn (Lorenz) map, and the less known torn away map introduced by Rössler in 1979. The case of the “reverse” horseshoe map is also discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.