Abstract

Minimal surfaces in a Riemannian manifold \(M^n\) are surfaces which are stationary for area: the first variation of area vanishes. In this paper, we treat two topics on branch points of minimal surfaces. In the first, we show that a minimal surface \(f:\mathbb RP^2\rightarrow M^3\) which has the smallest area, among those mappings from the projective plane which are not homotopic to a constant mapping, is an immersion. That is, \(f\) is free of branch points, including especially false branch points. As a major step toward treating minimal surfaces of the type of the projective plane, we extend the fundamental theorem of branched immersions to the nonorientable case. In the second topic, we resolve, in the negative, a question on the directions of curves of self-intersection at a true branch point, which was posed by Courant (Dirichlet’s principle, conformal mapping and minimal surfaces. Wiley, New York, 1950).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.