Abstract
Pipe routing, in particular branch pipes with multiple terminals, has an important influence on product performance and reliability. This paper develops a new rectilinear branch pipe routing approach for automatic generation of the optimal rectilinear branch pipe routes in constrained spaces. Firstly, this paper presents a new 3D connection graph, which is constructed by extending a new 2D connection graph. The new 2D connection graph is constructed according to five criteria in discrete Manhattan spaces. The 3D connection graph can model the 3D constrained layout space efficiently. The length of pipelines and the number of bends are modeled as the optimal design goal considering the number of branch points and three types of engineering constraints. Three types of engineering constraints are modeled by this 3D graph and potential value. Secondly, a new concurrent Max–Min Ant System optimization algorithm, which adopts concurrent search strategy and dynamic update mechanism, is used to solve Rectilinear Branch Pipe Routing optimization problem. This algorithm can improve the search efficiency in 3D constrained layout space. Numerical comparisons with other current approaches in literatures demonstrate the efficiency and effectiveness of the proposed approach. Finally, a case study of pipe routing for aero-engines is conducted to validate this approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.