Abstract

Xerophytes in desert improve their fitness under stress through the development of stems and branches. However, little is known about changes in the structure and function of endophytic microorganisms in response to interactions between desert plants and their environment. In this study, we analyzed the lignification indices of young and mature branches during their development in a typical desert xerophyte, Nitraria tangutorum, and combined 16S and ITS high-throughput sequencing techniques to draw the following conclusions. Nitraria tangutorum accumulated more lignin, cellulose, and hemicellulose content during lignification. In addition, the number of OTUs and diversity of endophytic bacteria and fungi were reduced. Both endophytic bacteria and fungi were governed by stochastic processes during the development of stems and branches of Nitraria tangutorum and were significantly affected by lignification indices. Meanwhile, the development of stems and branches increased the relative abundance of Cyanobacteria and Ascomycota, and the dominant bacterial genera were mostly positively correlated with the lignification indices. In addition, stem and branch lignification reduced endophytic microbial interactions in the relationship between the endophytic bacterial and fungal networks of Nitraria tangutorum. Functional prediction analysis further revealed that lignification of Nitraria tangutorum branches changed the metabolic function of endophytic bacteria. The results of this study indicate that plant endophytic microorganisms play an important role in resisting and adapting to adversity and provide support for related studies on microbial ecology in desert areas.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call