Abstract

Most existing Person Re-identification (Re-ID) models aim to learn global and multi-granularity local features by designing a multi-branch structure and performing a uniform partition with the various number of divisions in different branches. However, the uniform partition is likely to separate meaningful regions in a single branch, and interaction between various branches disappeared after the split. In this paper, we propose the Branch Interaction Network (BIN), a multi-branch network architecture with three branches for learning coarse-to-fine features. Instead of traditional uniform partition, a horizontal overlapped division is employed to make sure essential local areas between adjacent parts are covered. Additionally, a novel attention module called Inter-Branch Attention Module (IBAM) is introduced to model contextual dependencies in the spatial domain across branches and learn better shared and specific representations for each branch. Extensive experiments are conducted on three mainstream datasets, i.e., DukeMTMC-reID, Market-1501 and CUHK03, showing the effectiveness of our approach, which outperforms the state-of-the-art methods. For instance, we achieve a top result of 90.50% mAP and 92.06% rank-1 accuracy on DukeMTMC-reID with re-ranking.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.