Abstract

In this study, the braking performance of the undulating fin propulsion system of a biomimetic squid-like underwater robot was investigated through free run experiment and simulation of the quasi-steady mathematical model. The quasi-steady equations of motion were solved using the measured and calculated hydrodynamic forces and compared with free-run test results. Various braking strategies were tested and discussed in terms of stopping ability and the forces acting on the stopping stage. The stopping performance of the undulating fin propulsion system turned out to be excellent considering the short stopping time and short stopping distance. This is because of the large negative thrust produced by progressive wave in opposite direction. It was confirmed that the undulating fin propulsion system can effectively perform braking even in complex underwater explorations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call