Abstract

Chemically stable core–shell structured magnetic particles were synthesized by coating soft-magnetic carbonyl iron (CI) microspheres with silica through a sol–gel reaction, and applied as magnetorheological (MR) materials for a specially designed small-sized MR brake. The dynamic yield stress of the MR suspension containing the synthesized particles was also measured using a rotational rheometer under an applied magnetic field. The performance characteristics of the MR brake, including field dependent torque, hysteresis, time and torque tracking control responses were examined. The results showed that with the exception of the settling time, the other response times were faster than those of the pristine CI based MR fluid.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.