Abstract

Electric braking systems for passenger vehicles have become more and more interesting with the recent developments of hybrid electric and electric vehicles (HEVs and EVs). The major issue is the generation of the actuation energy required during the braking maneuver that makes the utilization of electric actuation unfeasible due to the size of electric actuators and to the existence of layout constraints. Self-energizing mechanisms that could be used to reduce both the actuation force and the energy required for braking are presented and compared in terms of the design criteria that are relevant to braking systems, that is, energy adsorption, actuating force, actuating stroke and, last but not least, stability. The derived analytic models are used to identify the driving design quantities and the sensitivity of the presented self-energizing architectures with respect to the caliper stiffness, which is a crucial aspect for traditional hydraulic calipers as well.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.