Abstract

IntroductionAlzheimer-type neuropil threads (NTs) and neurofibrillary tangles (NFTs) are comprised of either 4 repeat (4R)-tau, 3 repeat (3R)-tau, or a mixture of both. In the hippocampus, the number of NFTs, and the proportion of 3R tau progressively increases. If this preferential accumulation of 3R tau also occurs in the brainstem, it may be fundamentally related to progression of Alzheimer pathology.MethodsMidbrain and pontine sections of brainstems from 23 cases (Braak-NFT stages I/II: 8, III/IV: 8, and V/VI: 7) were double immunofluorolabeled for 4R and 3R tau. High-resolution (0.645 μm/pixel), in-focus snapshots were tiled to cover entire brain sections using a virtual slide system. Each lesion was classified by size (NT < 200 μm2 < NFT) and staining profile (3R/4R). In addition, the localization and quantity of amyloid β (Aβ) deposits were examined in adjacent sections for comparison with tau.ResultsThe data sets obtained from approximately 286 gigabytes of image files consisted of 847,763 NTs and 7859 NFTs. The proportion of 3R tau-positive NTs and NFTs in the midbrain, and 3R tau-positive NTs in the pons gradually increased with advancing NFT stages, while the proportion of 3R tau-positive NFTs in the pons was already elevated at early stages. Aβ deposits were absent at NFT stages I/II, and when present at later stages, their regional distribution was different from that of tau. These observations suggest that a progressive increase in the proportion of 3R tau occurs independently of Aβ deposits.ConclusionsThis is the first quantitative analysis of NFTs and NTs in the human brainstem. We demonstrate that the proportion of 3R tau in the brainstem neurofibrillary changes increases with disease progression. Because this phenomenon is shared between the brainstem and the hippocampus, this increase may be fundamental to the pathogenesis of Alzheimer disease.

Highlights

  • Alzheimer-type neuropil threads (NTs) and neurofibrillary tangles (NFTs) are comprised of either 4 repeat (4R)-tau, 3 repeat (3R)-tau, or a mixture of both

  • Topographical distribution is similar between NTs and NFTs, and between 4R and 3R tau (Fig. 2) Midbrain and pontine sections from 23 cases with different NFT stages were double-immunofluorolabeled for 4R and 3R tau (Table 1)

  • In conclusion, we have shown that a progressive increase in the proportion of 3R tau-positive lesions is extended to brainstem lesions as a fundamental to the pathogenesis of Alzheimer disease (AD)

Read more

Summary

Introduction

Alzheimer-type neuropil threads (NTs) and neurofibrillary tangles (NFTs) are comprised of either 4 repeat (4R)-tau, 3 repeat (3R)-tau, or a mixture of both. Prior to the limbic area, subcortical nuclei such as the dorsal raphe nucleus (DRN) and locus coeruleus (LC) develop neurofibrillary changes much earlier, because they are sometimes detectable under 30 years of age in subclinical phases [6, 19, 46]. It is not known how these brainstem lesions change along disease progression [2]. This prompted us to examine how neurofibrillary changes in the brainstem are similar to and different from those in the limbic areas with special attention to tau isoforms

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call