Abstract

Background and PurposeBrainstem hemorrhage (BSH) is the most devastating subtype of intracerebral hemorrhage (ICH) with the highest mortality ranging from 56 % to 61.2 %. However, there is no effective medical or surgical therapy to improve its outcomes in clinic to date due to lack of understanding of its injury mechanisms. Herein, we explored the brainstem iron overload and injury in a rat model of BSH. MethodsNeurological scores were examined on day 1, 3, and 7 after modeling, and mortality of the rats was recorded to draft a survival curve. Rats were monitored by MRI using T2 and susceptibility weighted imaging (SWI) before sacrifice for examination of histology and immunofluorescence on day 1, 3, and 7. ResultsBSH rats had a high mortality of 56 % and demonstrated the severe neurological deficits mimicking the clinical conditions. SWI showed that the same increasing tendency in change of hypointense area with that in iron deposition by Perls staining from day 1 to 7. Expression of heme oxygenase 1 (HO-1) and generation of reactive oxygen species (ROS) had similar tendency and both peaked on day 3. Neuronal degeneration occurred and stayed elevated from day 1 to 7, while myelin sheath injury was initially observed on day 1 but without significant difference within 7 days. Conclusions: The time courses of erythrocyte lysis, HO-1 expression, iron deposition and ROS generation are related to each other after BSH. Besides, brainstem injury including neuronal degeneration and myelin damage were observed and discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call