Abstract
The lamprey brainstem contains a ‘command system’ which descends into the spinal cord to activate motor networks and initiate locomotion. In the present study, partial lesions were made in the rostral spinal cord in order to spare various tracts and determine which tracts carry the descending command signal to the spinal cord. Sparing the medial areas of the rostral spinal cord usually blocked both sensory-evoked and spontaneous locomotion, while sparing the lateral regions of the rostral spinal cord did not abolish voluntary locomotor activity. Either the ventrolateral or dorsolateral spinal tracts could support the initiation of locomotion. Brainstem structures rostral to the mesencephalon were not necessary for the initiation of locomotor behavior. The data indicate that the lateral spinal tracts contain a significant part of the descending command pathway for locomotion. In contrast, the medial spinal tracts were neither necessary nor usually sufficient to support locomotor behavior, suggesting that the larger reticulospinal Muller cells, which project in these tracts, do not contribute significantly to the initiation of locomotion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.