Abstract

Astrocytic Ca2+-mediated gliovascular interactions regulate the neurovascular network in situ and in vivo. However, it is difficult to measure directly both the astrocytic activity and fMRI to relate the various forms of blood-oxygen-level-dependent (BOLD) signaling to brain states under normal and pathological conditions. In this study, fMRI and GCaMP-mediated Ca2+ optical fiber recordings revealed distinct evoked astrocytic Ca2+ signals that were coupled with positive BOLD signals and intrinsic astrocytic Ca2+ signals that were coupled with negative BOLD signals. Both evoked and intrinsic astrocytic calcium signal could occur concurrently or respectively during stimulation. The intrinsic astrocytic calcium signal can be detected globally in multiple cortical sites in contrast to the evoked astrocytic calcium signal only detected at the activated cortical region. Unlike propagating Ca2+ waves in spreading depolarization/depression, the intrinsic Ca2+ spikes occurred simultaneously in both hemispheres and were initiated upon the activation of the central thalamus and midbrain reticular formation. The occurrence of the intrinsic astrocytic calcium signal is strongly coincident with an increased EEG power level of the brain resting-state fluctuation. These results demonstrate highly correlated astrocytic Ca2+ spikes with bidirectional fMRI signals based on the thalamic regulation of cortical states, depicting a brain-state dependency of both astrocytic Ca2+ and BOLD fMRI signals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.