Abstract

Objective: Brain dysplasias produced by irradiation with gamma rays at various stages of prenatal development cause different post-natal susceptibility to seizures. To detect possible determinants of this difference, patterns of degenerative changes in the dysplastic brains following pilocarpine-induced epilepsy were analysed.Methods: Pregnant Wistar rats were exposed to a 1.0 Gy dose of gamma rays on gestation days 15 (E15) or 17 (E17). On post-natal day 60, their offspring received pilocarpine injections to evoke status epilepticus. Motor manifestations of seizure activity were observed continuously for 6 hours and rated. Six days following the status epilepticus, the rats were anesthetized and T2-weighted magnetic resonance (MR) images were obtained. Frontal sections of the brains were immunostained for immunoglobulins G (IgGs) to detect blood–brain barrier damage and IgG cell uptake and glial fibrillary acidic protein (GFAP) or S-100-β protein to visualize astrocytes. Bandeiraea simplicifolia isolectin-B4 (BSI-B4) isolectin histochemistry was also performed to detect microglia/macrophages.Results: Tissue damages within epileptic brains as observed by light microscopy generally reflected changes in magnetic resonance imaging (MRI) at similar locations. Brains of rats irradiated on E15 or E17 and showing epileptic symptoms at comparable intensity also displayed different distribution of the pathologic changes. Among other post-epileptic changes, in rats irradiated on E17 as well as controls, the laterodorsal and ventrolateral thalamic nuclei showed signs of severe degeneration. In rats irradiated on E15, the nuclei were free of such changes.Conclusions: The obtained data point to important differences in the pattern of propagation of epileptic activity in the dysplastic brains suffering from neuronal loss in functionally different structures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.