Abstract

The Industrial Internet of Things (IIoT) accommodates a huge number of heterogeneous devices to bring vast services under a distributed computing scenarios. Most productive services in IIoT are closely related to production control and require distributed network support with low delay. However, the resource reservation based on gross traffic prediction ignores the importance of productive services and treats them as ordinary services, so it is difficult to provide stable low delay support for large amounts of productive service requests. For many productions, unexpected communication delays are unacceptable, and the delay may lead to serious production accidents causing great losses, especially when the productive service is security related. In this article, we propose a brain-like productive service provisioning scheme with federated learning (BrainIoT) for IIoT. The BrainIoT scheme is composed of three algorithms, including industrial knowledge graph-based relation mining, federated learning-based service prediction, and globally optimized resource reservation. BrainIoT combines production information into network optimization, and utilizes the interfactory and intrafactory relations to enhance the accuracy of service prediction. The globally optimized resource reservation algorithm suitably reserves resources for predicted services considering various resources. The numerical results show that the BrainIoT scheme utilizes interfactory relation and intrafactory relation to make an accurate service prediction, which achieves 96% accuracy, and improves the quality of service.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.