Abstract

In this article, inspired partially by the physiological evidence of brain’s growth and development, we developed a new type of constructive learning algorithm with evolutionally additive nonlinear neurons. The new algorithms have remarkable ability in effective regression and accurate classification. In particular, the algorithms are able to sustain a certain reduction of the loss function when the dynamics of the trained network are bogged down in the vicinity of the local minima. The algorithm augments the neural network by adding only a few connections as well as neurons whose activation functions are nonlinear, nonmonotonic, and self-adapted to the dynamics of the loss functions. Indeed, we analytically demonstrate the reduction dynamics of the algorithm for different problems, and further modify the algorithms so as to obtain an improved generalization capability for the augmented neural networks. Finally, through comparing with the classical algorithm and architecture for neural network construction, we show that our constructive learning algorithms as well as their modified versions have better performances, such as faster training speed and smaller network size, on several representative benchmark datasets including the MNIST dataset for handwriting digits.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.