Abstract

BackgroundRadical prostatectomy (RP) carries the risk of erectile dysfunction (ED) due to cavernous nerve (CN) injury. Schwann cells are essential for the maintenance of integrity and function of peripheral nerves such as the CNs. We hypothesize that brain-derived neurotrophic factor (BDNF) activates the Janus kinase (JAK)/(signal transducer and activator of transcription) STAT pathway in Schwann cells, not in neuronal axonal fibers, with the resultant secretion of cytokines from Schwann cells to facilitate nerve recovery.MethodsUsing four different cell lines—human neuroblastoma BE(2)-C and SH-SY5Y, human Schwann cell (HSC), and rat Schwann cell (RSC) RT4-D6P2T—we assessed the effect of BDNF application on the activation of the JAK/STAT pathway. We also assessed the time response of JAK/STAT pathway activation in RSCs and HSCs after BDNF treatment. We then assayed cytokine release from HSCs as a response to BDNF treatment using oncostatin M and IL6 as markers.ResultsWe showed extensive phosphorylation of STAT3/STAT1 by BDNF at high dose (100 pM) in RSCs, with no JAK/STAT pathway activation in human neuroblastoma cell lines. The time response of JAK/STAT pathway activation in RSCs and HSCs after BDNF treatment showed an initial peak at shortly after treatment and then a second higher peak at 24–48 hours. Cytokine release from HSCs increased progressively after BDNF application, reaching statistical significance for IL6.ConclusionsWe demonstrated for the first time the indirect mechanism of BDNF enhancement of nerve regeneration through the activation of JAK/STAT pathway in Schwann cells, rather than directly on neurons. As a result of BDNF application, Schwann cells produce cytokines that promote nerve regeneration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.