Abstract

Intestinal microbiota disorder was associated with constipation. This study investigated the microbiota-gut-brain axis and oxidative stress mediated by intestinal mucosal microbiota in mice with spleen deficiency constipation. The Kunming mice were randomly divided into the control (MC) group and the constipation (MM) group. The spleen deficiency constipation model was established by gavage with Folium sennae decoction and controlled diet and water intake. The body weight, spleen and thymus index, 5-Hydroxytryptamine (5-HT) and Superoxide Dismutase (SOD) content were significantly lower in the MM group than the MC group, the content of vasoactive intestinal peptide (VIP) and malondialdehyde (MDA) content were significantly higher than the MC group. The Alpha diversity of intestinal mucosal bacteria was not changed but beta diversity was changed in mice with spleen deficiency constipation. Compared to the MC group, the relative abundance of Proteobacteria was an upward trend and the Firmicutes/Bacteroidota (F/B) value was a downward trend in the MM group. There was a significant difference in the characteristic microbiota between the two groups. In the MM group, Brevinema, Akkermansia, Parasutterella, Faecalibaculum, Aeromonas, Sphingobium, Actinobacillus, and other pathogenic bacteria were enriched. Meanwhile, there was a certain relationship between the microbiota and gastrointestinal neuropeptide and oxidative stress indicators. The community structure of intestinal mucosal bacteria in mice with spleen deficiency constipation was changed, which was characterized by the reduction of F/B value and enrichment of Proteobacteria. Microbiota-gut-brain axis may be important for spleen deficiency constipation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call