Abstract

A major challenge in neuroscience is to sample large-scale neuronal activity at high speed and resolution. While calcium (Ca2+) imaging allows high-resolution optical read-out of neuronal activity, it remains challenging to sample large-scale activity at high speed, as most available imaging microscopes provide a trade-off between speed and the size of the acquisition volume. One promising method that avoids the trade-off between the acquisition rate and volume size is light-field microscopy in which the full 3D profile of an object is imaged simultaneously, thereby offering high speed at the cost of reduced spatial resolution. Here we introduce speckle light-field microscopy (speckle LFM), which utilizes speckle-based structured illumination to enhance spatial resolution. Using speckle LFM we demonstrate brain-wide recording of neuronal activity in larval zebrafish at 10 Hz volume rate and at 1.4 times higher resolution compared to conventional light-field microscopy and with suppressed background fluorescence. In addition to improving resolution of spatial structure, we show that the increased resolution reduces spurious signal crosstalk between neighboring neurons.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call