Abstract

Autism spectrum disorder (ASD) is a lifelong neurodevelopmental disorder, with only a small proportion of people obtaining optimal outcomes. We do not know if children with ASD exhibit abnormalities in the white matter (WM) microstructure or if this pattern would predict ASD prognosis in a longitudinal study. 182 children with ASD were recruited for MRI and clinical assessment; 111 completed a four-year follow-up visit (30 with optimal outcomes, ASD−; 81 with persistent diagnosis, ASD+). Additionally, 72 typically developing controls (TDC) were recruited. The microstructural integrity of WM fiber tracts was revealed using tract-based spatial statistics (TBSS) and probabilistic tractography analyses. We examined the neuroimaging abnormality associated with ASD and its relationship to ASD with optimal outcome. The ASD+ and TDC groups were propensity score matched to the ASD− group in terms of age, gender, and IQ. TBSS indicated that children with ASD exhibited abnormalities in the superior longitudinal fasciculus (SLF), inferior longitudinal fasciculus (ILF), and extending to the anterior thalamic radiation (ATR) and cingulum; whereas the ASD+ group showed more severe abnormalities than the ASD- group. Probabilistic tractography analysis revealed that ASD+ group exhibited lower Fractional Anisotropy (FA) of the left superior thalamic radiation (STR L) than ASD− group, and that FA value of the STR L was a significant predictor of optimal outcome (EX(B), 6.25; 95% CI 2.50—15.63; p < 0.001). Children with ASD showed significant variations in SLF_L and STR_L, and STR_L was a predictor of ‘ASD with optimal outcome’. Our findings may aid in comprehension of the mechanisms of ‘ASD with optimal outcome’.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call